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Does Your Legacy System Spark Joy?
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The Paradox of Legacy Systems
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How to Handle Legacy Systems?

Big-bang replacement is 
not just expensive.

Itʼs risky!

Incremental
evolution
instead



Evolving a Legacy System w/ Architecture for Flow

Adaptive, socio-technical 
systems optimized for a 

fast flow of value & 
feedback

Business
Strategy

Software
Design

Team
Organi-
zation



Architecture for Flow Canvas



Current Teams & Dependencies
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Assessing Current Flow of Change



Flow of ChangeTeams Customers

What blocks 
the current 

flow?

What 
should be
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What 
should be

kept?

Assessing Current Flow of Change
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Mapping the Current Business Landscape
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“People buy products and 
services to get a job done.ˮ

Clayton Christensen 

Mapping the Current Business Landscape
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Categorizing the Problem Space



Categorizing the Problem Space
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Modularizing the Solution Space

Monolithic, tightly 
coupled big ball 
of mud w/ messy
models & fuzzy

boundaries

Modular, well-
encapsulated, 

loosely coupled 
system

Continuous Architecture in Practice

“Architect for change 
- leverage the power 

of small”

Modularizing 
the solution 
space with 
bounded 
contexts

Grouping 
related 

business 
behaviour 
together

Serve as 
well-defined 
ownership 
boundaries

Enforcing 
high 

cohesion & 
modularity



Domain 
Experts

Development 
Teams

Close
Collaboration

Bounded 
Context 

Candidates

by Alberto Brandolini

Identifying 
Bounded 

Contexts w/ 
EventStorming

Modularizing the Solution Space



Envisioning the Future Landscape
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Aligning Teams & Evolving Interactions
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boundaries 
aligned to 

customer-driven 
streams of change
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Stream-aligned teams  

Identify 
services 

needed to 
support reliable
flow of change
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self-service
capabilities

(X-as-a-
service)

Platform Team(s)



Evolving Team Interactions



Unlocking Blockers to Flow
Monolithic, tightly 
coupled big ball 
of mud w/ messy
models & fuzzy

boundaries

Modular, well-
encapsulated, 

loosely coupled 
system w/

bounded contexts

Custom-building 
non-

differentiating 
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How to Transition?

Incremental Evolution
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An Adaptive, Iterative Process 

Discovery & Design Incremental Evolution

Primary Flow
Feedback Loop

Assessing the 
Current State

Designing the 
Ideal Future

Aligning teams 
&  team 

interactions 
incrementally

Aligning 
architecture 

incrementally

Evolving value 
chain



Generate
value

aligned to
user needs

Unlock
blockers
to flow

Focus major
development

investments on
differentiators

Close
potential
efficiency

gaps

Align teams
& evolve team

Interaction 
to system
& strategy

Flow of ChangeTeams Customers

Optimize
flow of 

sustainable 
value

Enabling fast
and constant

feedback

Summary

No silver bullet: Adapt these principles to your specific context, culture and challenges



Evolve your Legacy 
System with Gratitude

��



Ressources 
Architecture for Flow Canvas
https://susannekaiser.net/architecture-for-flow-canvas/
Case Study
https://ninasiessegger.de/en/blog/re-teaming-for-faster-flow 

https://medium.com/wardleymaps
https://learnwardleymapping.com/
https://github.com/wardley-maps-community/awesome-wardley-maps
https://github.com/ddd-crew
https://www.dddheuristics.com

https://susannekaiser.net/architecture-for-flow-canvas/
https://ninasiessegger.de/en/blog/re-teaming-for-faster-flow
https://medium.com/wardleymaps
https://learnwardleymapping.com/
https://github.com/wardley-maps-community/awesome-wardley-maps
https://github.com/ddd-crew
https://www.dddheuristics.com


Thank you!
Susanne Kaiser

Independent Tech Consultant
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slide deck
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