
Evolving a Legacy System
w/ Architecture for Flow

Susanne Kaiser
Independent Tech Consultant

Does Your Legacy System Spark Joy?

Image source: https://konmarie.com

The Paradox of Legacy Systems

Difficult to
modify

Tightly
coupled

Hard to
test

Lacking
modularity

Expensive
to

maintain

Slow to
adapt to
changing

requirements

Lacking
adequate

test coverage

Accumulated
Innovation
Constraints

Proven
Business

Value

Accumulated
domain

knowledge

Battle-
tested

reliability

Stabilized
over years

Represent
past

success

Integrated
ecosystem

How to Handle Legacy Systems?

Big-bang replacement is
not just expensive.

Itʼs risky!

Incremental
evolution
instead

Evolving a Legacy System w/ Architecture for Flow

Adaptive, socio-technical
systems optimized for a

fast flow of value &
feedback

Business
Strategy

Software
Design

Team
Organi-
zation

Architecture for Flow Canvas

Current Teams & Dependencies

Frontend-Team

Backend-Team Infrastructure/Ops-
Team

8

17 4

Provision
infrastructure

Monitor
uptime, logs,

alerts

Implement
business

logic

Expose APIs
to frontend

teams Manage
persistence &
data access

Implement
cross-cutting
capabilities

Implement
UI

components

Handle user
experience

(UX)

Handle
responsive
design &

accessibility

Security
updates

Deployments
of new
releases

Backups,
scaling,
incident
response

Current Teams & Dependencies

Assessing Current Flow of Change

Flow of ChangeTeams Customers

What blocks
the current

flow?

What
should be

minimized?

What works
well in the

flow?

What
should be

kept?

Assessing Current Flow of Change

What is Preventing Flow? (Examples)

Flow of Change

- -

- -

Team OwnershipTeam Dependencies

Software Architecture & Quality Work Management

What is Preventing Flow? (Examples)

Flow of Change

- -

- -

Team OwnershipTeam Dependencies

Software Architecture & Quality Work Management

Teams don’t
fully own

entire
end-to-end

flow

What is Preventing Flow? (Examples)

Flow of Change

- -

- -

Team OwnershipTeam Dependencies

Software Architecture & Quality Work Management

Teams don’t
fully own

entire
end-to-end

flow

Teams depend
on other
teams’

activities &
tasks

What is Preventing Flow? (Examples)

Flow of Change

- -

- -

Team OwnershipTeam Dependencies

Software Architecture & Quality Work Management

Teams don’t
fully own

entire
end-to-end

flow

Teams depend
on other
teams’

activities &
tasks

Teams depend
on other
people’s
specific
expertise

What is Preventing Flow? (Examples)

Flow of Change

- -

- -

Team OwnershipTeam Dependencies

Software Architecture & Quality Work Management

Teams don’t
fully own

entire
end-to-end

flow

Teams depend
on other
teams’

activities &
tasks

Teams depend
on other
people’s
specific
expertise

Every blocking
dependency
introduces

coordination efforts
& possibility

of delays

What is Preventing Flow? (Examples)

Flow of Change

- -

- -

Team OwnershipTeam Dependencies

Software Architecture & Quality Work Management

Teams don’t
fully own

entire
end-to-end

flow

Teams depend
on other
teams’

activities &
tasks

Teams depend
on other
people’s
specific
expertise

Every blocking
dependency
introduces

coordination efforts
& possibility

of delays

Constraints
slow down
the overall

performance

What is Preventing Flow? (Examples)

Flow of Change

- -

- -

Team OwnershipTeam Dependencies

Software Architecture & Quality Work Management

Teams don’t
fully own

entire
end-to-end

flow

Teams depend
on other
teams’

activities &
tasks

Teams depend
on other
people’s
specific
expertise

Every blocking
dependency
introduces

coordination efforts
& possibility

of delays

Constraints
slow down
the overall

performance

Tightly
coupled

architecture

What is Preventing Flow? (Examples)

Flow of Change

- -

- -

Team OwnershipTeam Dependencies

Software Architecture & Quality Work Management

Teams don’t
fully own

entire
end-to-end

flow

Teams depend
on other
teams’

activities &
tasks

Teams depend
on other
people’s
specific
expertise

Every blocking
dependency
introduces

coordination efforts
& possibility

of delays

Constraints
slow down
the overall

performance

Tightly
coupled

architecture

High
Technical

Dept

What is Preventing Flow? (Examples)

Flow of Change

- -

- -

Team OwnershipTeam Dependencies

Software Architecture & Quality Work Management

Teams don’t
fully own

entire
end-to-end

flow

Teams depend
on other
teams’

activities &
tasks

Teams depend
on other
people’s
specific
expertise

Every blocking
dependency
introduces

coordination efforts
& possibility

of delays

Constraints
slow down
the overall

performance

Tightly
coupled

architecture

High
Technical

Dept

Lack of
clear

ownership

What is Preventing Flow? (Examples)

Flow of Change

- -

- -

Team OwnershipTeam Dependencies

Software Architecture & Quality Work Management

Teams don’t
fully own

entire
end-to-end

flow

Teams depend
on other
teams’

activities &
tasks

Teams depend
on other
people’s
specific
expertise

Every blocking
dependency
introduces

coordination efforts
& possibility

of delays

Constraints
slow down
the overall

performance

Tightly
coupled

architecture

High
Technical

Dept

Lack of
clear

ownership

Teams own too
many/large
parts of the

system

What is Preventing Flow? (Examples)

Flow of Change

- -

- -

Team OwnershipTeam Dependencies

Software Architecture & Quality Work Management

Teams don’t
fully own

entire
end-to-end

flow

Teams depend
on other
teams’

activities &
tasks

Teams depend
on other
people’s
specific
expertise

Every blocking
dependency
introduces

coordination efforts
& possibility

of delays

Constraints
slow down
the overall

performance

Tightly
coupled

architecture

High
Technical

Dept

Lack of
clear

ownership

Teams own too
many/large
parts of the

system

High team
cognitive

 load

What is Preventing Flow? (Examples)

Flow of Change

- -

- -

Team OwnershipTeam Dependencies

Software Architecture & Quality Work Management

Teams don’t
fully own

entire
end-to-end

flow

Teams depend
on other
teams’

activities &
tasks

Teams depend
on other
people’s
specific
expertise

Every blocking
dependency
introduces

coordination efforts
& possibility

of delays

Constraints
slow down
the overall

performance

Tightly
coupled

architecture

High
Technical

Dept

Lack of
clear

ownership

Teams own too
many/large
parts of the

system

High team
cognitive

 load

Lack of clear
priorities
& focus

High WIP

Many
interruptions

& context
switches

Mapping the Current Business Landscape

Pr
ob

le
m

 S
pa

ce

“People buy products and
services to get a job done.ˮ

Clayton Christensen

Mapping the Current Business Landscape

Identify desired
outcomes as
user needs

Know your
users and their

jobs to get
done

Teachers
Facilitate
remote learning

Prepare
learning
material

Track
progress

Facilitate
communi-
cation

Ensure
secure
access

Assess student
understanding

Starting from
the user

perspective

Prepare
learning
material

Teachers

Assess student
understanding

Track
progress

Facilitate
communi-
cation

Ensure
secure
access

Pr
ob

le
m

 S
pa

ce

Mapping the Current Business Landscape
Facilitate
remote learning

Understanding
the

value chain

So
lu

tio
n

Sp
ac

e

Va
lu

e
Ch

ai
n

Online School

Search
Engine

Message
Broker

Compute

VM

SMTP
Server

Data
Storage

Identify
components

fulfilling
user needs

Mapping the Current Business Landscape

Prepare
learning
material

Teachers

Assess student
understanding

Track
progress

Facilitate
communi-
cation

Ensure
secure
access

Pr
ob

le
m

 S
pa

ce

Facilitate
remote learning

So
lu

tio
n

Sp
ac

e

Va
lu

e
Ch

ai
n

Search
Engine

Message
Broker Compute

VM

SMTP
Server

EvolutionGenesis Custom-Built Product (+rental) Commodity (+utility)

Data
Storage

Mapping
components
to evolution

stages

Online School

Mapping the Current Business Landscape

Prepare
learning
material

Teachers

Assess student
understanding

Track
progress

Facilitate
communi-
cation

Ensure
secure
access

Pr
ob

le
m

 S
pa

ce

Facilitate
remote learning

So
lu

tio
n

Sp
ac

e

Va
lu

e
Ch

ai
n

Search
Engine

Message
Broker Compute

VM

SMTP
Server

EvolutionGenesis Custom-Built Product (+rental) Commodity (+utility)

Data
Storage

Common
understanding

of business
landscape

Online School
Are we

custom-building
components that
are not core to
our business

Can we utilize
further
evolved

components?

Where
to

invest? What
to

evolve?

Categorizing the Problem Space

Categorizing the Problem Space

Prepare
learning
material

Teachers

Assess student
understanding

Track
progress

Facilitate
communi-
cation

Ensure
secure
access

Pr
ob

le
m

 S
pa

ce

Core Domain

Supporting Subdomain

Generic Subdomain

So
lu

tio
n

Sp
ac

e Where to
prioritize
strategic

investments?

What to
 build, buy, or

outsource?

Modularizing the Solution Space

Prepare
learning
material

Teachers

Assess student
understanding

Track
progress

Facilitate
communi-
cation

Ensure
secure
access

Pr
ob

le
m

 S
pa

ce
So

lu
tio

n
Sp

ac
e

Va
lu

e
Ch

ai
n

EvolutionGenesis Custom-Built Product (+rental) Commodity (+utility)

BBoM

Monolithic,
tightly coupled
big ball of mud

w/ messy
models & fuzzy

boundaries

Lack of
clear

ownership

High
team

cognitive
load

Custom-
building parts
that are not
core to our
business

Modularizing the Solution Space

Prepare
learning
material

Teachers

Assess student
understanding

Track
progress

Facilitate
communi-
cation

Ensure
secure
access

Pr
ob

le
m

 S
pa

ce
So

lu
tio

n
Sp

ac
e

Va
lu

e
Ch

ai
n

EvolutionGenesis Custom-Built Product (+rental) Commodity (+utility)

BBoM

Modularizing the Solution Space

Monolithic, tightly
coupled big ball
of mud w/ messy
models & fuzzy

boundaries

Modular, well-
encapsulated,

loosely coupled
system

Continuous Architecture in Practice

“Architect for change
- leverage the power

of small”

Modularizing
the solution
space with
bounded
contexts

Grouping
related

business
behaviour
together

Serve as
well-defined
ownership
boundaries

Enforcing
high

cohesion &
modularity

Domain
Experts

Development
Teams

Close
Collaboration

Bounded
Context

Candidates

by Alberto Brandolini

Identifying
Bounded

Contexts w/
EventStorming

Modularizing the Solution Space

Envisioning the Future Landscape

Prepare
learning
material

Teachers

Assess student
understanding

Track
progress

Facilitate
communi-
cation

Ensure
secure
access

Pr
ob

le
m

 S
pa

ce
So

lu
tio

n
Sp

ac
e

Va
lu

e
Ch

ai
n

EvolutionGenesis Custom-Built Product (+rental) Commodity (+utility)

Content
Creation

Envisioning the Future Landscape

Assess.
ment

Progress
Tracking

Messag-
ing

Identity &
Access

Notification H.

Core Domain

Supporting Subdomain

Generic Subdomain

Are we
custom-building

components
that are not
core to our
business?

Bounded Context

Prepare
learning
material

Teachers

Assess student
understanding

Track
progress

Facilitate
communi-
cation

Ensure
secure
access

Pr
ob

le
m

 S
pa

ce
So

lu
tio

n
Sp

ac
e

Va
lu

e
Ch

ai
n

EvolutionGenesis Custom-Built Product (+rental) Commodity (+utility)

Content
Creation

Envisioning the Future Landscape

Assess.
mentFocus major

development
investments on
differentiators

Progress
Tracking

Messaging

Notification H.Can specialized
non-differentiators
be productized?

Identity &
Access

Evaluate existing
solutions for

un-specialized
non-differentiators

Bounded Context

Core Domain

Supporting Subdomain

Generic Subdomain

Use/buy off-the-shelf

Outsource to utility suppliers

Build in-house

Prepare
learning
material

Teachers

Assess student
understanding

Track
progress

Facilitate
communi-
cation

Ensure
secure
access

Pr
ob

le
m

 S
pa

ce
So

lu
tio

n
Sp

ac
e

Va
lu

e
Ch

ai
n

EvolutionGenesis Custom-Built Product (+rental) Commodity (+utility)

Content
Creation

Envisioning the Future Landscape

Assess.
ment

Progress
Tracking

Messaging

Notification H.

Identity &
Access

SE

Message
Broker Compute

VM

SMTP
Server

Data
Storage

Can we
utilize further

evolved
components?

Core Domain

Supporting Subdomain

Generic Subdomain

Use/buy off-the-shelf

Outsource to utility suppliers

Build in-house

Prepare
learning
material

Teachers

Assess student
understanding

Track
progress

Facilitate
communi-
cation

Ensure
secure
access

Pr
ob

le
m

 S
pa

ce
So

lu
tio

n
Sp

ac
e

Va
lu

e
Ch

ai
n

EvolutionGenesis Custom-Built Product (+rental) Commodity (+utility)

Content
Creation

Envisioning the Future Landscape

Assess.
ment

Progress
Tracking

Messaging

Notification H.

Identity &
Access

Core Domain

Supporting Subdomain

Generic Subdomain

IdPaaS

SEaaS DBaaS

MBaaS SMTPaaS

Serverless
Compute

Increasing
efficiency

by leveraging
standardized
commodities

Use/buy off-the-shelf

Outsource to utility suppliers

Build in-house

Aligning Teams & Evolving Interactions

Prepare
learning
material

Teachers

Assess student
understanding

Track
progress

Facilitate
communi-
cation

Ensure
secure
access

Pr
ob

le
m

 S
pa

ce
So

lu
tio

n
Sp

ac
e

Va
lu

e
Ch

ai
n

Aligning Teams & Evolving Interactions

Identifying
main streams of
change starting
from customer

needs

What will
drive value

and change?

Core Domain

Supporting Subdomain

Generic Subdomain

Prepare
learning
material

Teachers

Assess student
understanding

Track
progress

Facilitate
communi-
cation

Ensure
secure
access

Pr
ob

le
m

 S
pa

ce
So

lu
tio

n
Sp

ac
e

Va
lu

e
Ch

ai
n

EvolutionGenesis Custom-Built Product (+rental) Commodity (+utility)

Content
Creation

Assess.
ment

Progress
Tracking

Messaging

Notification H.

Identity &
Access

IdPaaS

SEaaS DBaaS

MBaaS SMTPaaS

Serverless
Compute

Aligning Teams & Evolving Interactions
Find suitable team

boundaries
aligned to

customer-driven
streams of change

Bounded contexts
as team

boundaries for
stream-aligned

teams

Stream-aligned teams

Identify
services

needed to
support reliable
flow of change

Providing
self-service
capabilities

(X-as-a-
service)

Platform Team(s)

Evolving Team Interactions

Unlocking Blockers to Flow
Monolithic, tightly
coupled big ball
of mud w/ messy
models & fuzzy

boundaries

Modular, well-
encapsulated,

loosely coupled
system w/

bounded contexts

Custom-building
non-

differentiating
components

Focus major
development

investments on
differentiators w/
subdomain types

Using less
evolved

components

Closing efficiency
gaps with

standardized
commodities

Lack of
clear

ownership

Bounded contexts
as well-defined

ownership
boundaries

Teams own too
many/too large

parts of the
system

Optimizing for
team cognitive

load

Teams depend
on other teams’

activities &
tasks

(handover)

Cross-functional,
autonomous

stream-aligned
teams & platform
teams providing
self-service srvcs

Teams wait
for other

people w/
specific

expertise to
do something

Enabling teams
as internal

mentor, coaches
to upskill teams

SAT 1

SAT 2
SAT 3 SAT 4

Platform
Team(s)

As-Is To-Be

SAT 1

SAT 2
SAT 3 SAT 4

Platform
Team(s)

As-Is To-Be

How to Transition?

Incremental Evolution

Incremental Evolution (Example)

Incremental Evolution (Example)

Incremental Evolution (Example)

Incremental Evolution (Example)

Incremental Evolution (Example)

An Adaptive, Iterative Process

Discovery & Design Incremental Evolution

Primary Flow
Feedback Loop

Assessing the
Current State

Designing the
Ideal Future

Aligning teams
& team

interactions
incrementally

Aligning
architecture

incrementally

Evolving value
chain

Generate
value

aligned to
user needs

Unlock
blockers
to flow

Focus major
development

investments on
differentiators

Close
potential
efficiency

gaps

Align teams
& evolve team

Interaction
to system
& strategy

Flow of ChangeTeams Customers

Optimize
flow of

sustainable
value

Enabling fast
and constant

feedback

Summary

No silver bullet: Adapt these principles to your specific context, culture and challenges

Evolve your Legacy
System with Gratitude

��

Ressources
Architecture for Flow Canvas
https://susannekaiser.net/architecture-for-flow-canvas/
Case Study
https://ninasiessegger.de/en/blog/re-teaming-for-faster-flow

https://medium.com/wardleymaps
https://learnwardleymapping.com/
https://github.com/wardley-maps-community/awesome-wardley-maps
https://github.com/ddd-crew
https://www.dddheuristics.com

https://susannekaiser.net/architecture-for-flow-canvas/
https://ninasiessegger.de/en/blog/re-teaming-for-faster-flow
https://medium.com/wardleymaps
https://learnwardleymapping.com/
https://github.com/wardley-maps-community/awesome-wardley-maps
https://github.com/ddd-crew
https://www.dddheuristics.com

Thank you!
Susanne Kaiser

Independent Tech Consultant
https://susannekaiser.net

https://linked.in/suksr

Link to
slide deck

https://susannekaiser.net
https://linked.in/suksr

